2 research outputs found

    Vulnerable plaques and patients: state-of-the-art

    Get PDF
    Despite advanced understanding of the biology of atherosclerosis, coronary heart disease remains the leading cause of death worldwide. Progress has been challenging as half of the individuals who suffer sudden cardiac death do not experience premonitory symptoms. Furthermore, it is well-recognized that also a plaque that does not cause a haemodynamically significant stenosis can trigger a sudden cardiac event, yet the majority of ruptured or eroded plaques remain clinically silent. In the past 30 years since the term 'vulnerable plaque' was introduced, there have been major advances in the understanding of plaque pathogenesis and pathophysiology, shifting from pursuing features of 'vulnerability' of a specific lesion to the more comprehensive goal of identifying patient 'cardiovascular vulnerability'. It has been also recognized that aside a thin-capped, lipid-rich plaque associated with plaque rupture, acute coronary syndromes (ACS) are also caused by plaque erosion underlying between 25% and 60% of ACS nowadays, by calcified nodule or by functional coronary alterations. While there have been advances in preventive strategies and in pharmacotherapy, with improved agents to reduce cholesterol, thrombosis, and inflammation, events continue to occur in patients receiving optimal medical treatment. Although at present the positive predictive value of imaging precursors of the culprit plaques remains too low for clinical relevance, improving coronary plaque imaging may be instrumental in guiding pharmacotherapy intensity and could facilitate optimal allocation of novel, more aggressive, and costly treatment strategies. Recent technical and diagnostic advances justify continuation of interdisciplinary research efforts to improve cardiovascular prognosis by both systemic and 'local' diagnostics and therapies. The present state-of-the-art document aims to present and critically appraise the latest evidence, developments, and future perspectives in detection, prevention, and treatment of 'high-risk' plaques occurring in 'vulnerable' patients

    IgM anti-malondialdehyde low density lipoprotein antibody levels indicate coronary heart disease and necrotic core characteristics in the Nordic Diltiazem (NORDIL) study and the Integrated Imaging and Biomarker Study 3 (IBIS-3)

    Get PDF
    Background: Certain immunoglobulins (Ig) are proposed to have protective functions in atherosclerosis. Objectives: We tested whether serum levels of IgG and IgM autoantibodies against malondialdehyde low density lipoprotein (MDA-LDL) are associated with clinical coronary heart disease (CHD) and unfavorable plaque characteristics. Methods: NORDIL was a prospective study investigating adverse cardiovascular outcomes in hypertensive patients. IBIS-3 analyzed lesions in a non-culprit coronary artery with <50% stenosis using radiofrequency intravascular ultrasound (RF-IVUS) and near-infrared spectroscopy (NIRS). Imaging was repeated after a median of 386 days on rosuvastatin. Associations of antibodies with incident CHD and imaging parameters were assessed in the two sub-studies respectively. Findings: From 10,881 NORDIL patients, 87 had serum sampled at baseline and developed CHD over 4.5 years, matched to 227 controls. Higher titers of IgM anti-MDA-LDL had a protective effect on adverse outcomes, with odds ratio 0.29 (0.11, 0.76; p = 0.012; p = 0.016 for trend). Therefore, the effect was explored at the lesional level in IBIS-3. 143 patients had blood samples and RF-IVUS measurements available, and NIRS was performed in 90 of these. At baseline, IgM anti-MDA-LDL levels had a strong independent inverse relationship with lesional necrotic core volume (p = 0.027) and percentage of plaque occupied by necrotic core (p = 0.011), as well as lipid core burden index (p = 0.024) in the worst 4 mm segment. Interpretation: Our study supports the hypothesis that lower circulating levels of IgM anti-MDA-LDL are associated with clinical CHD development, and for the first time relates these findings to atherosclerotic plaque characteristics that are linked to vulnerability
    corecore